Redesigning the World: Ethical Questions about Genetic Engineering

14. Watson 1978:159, quoted in Tibor R. Szanto, “Value Communities in Science: The Recombinant DNA Case.” Controversial Science: From Content to Contention. Thomas Brante et. al. eds. (Albany, NY: SUNY Press), p. 244. Watson has also commented on the safety issue in gene therapy:
Calls for a cautious approach to gene therapy, guided by government regulation, met with scorn from James Watson,
president of the Cold Spring Harbor Laboratory on Long Island, New York. Watson won a Nobel prize in 1962 for
his work deciphering the structure of DNA and established the Human Genome Project. “If we wait for the success of somatic before trying germ line, we risk the sun burning out,” said Watson, who was equally critical of blanket
statements that all genetic enhancement is a bad idea. “If we can make better human beings by knowing how to add
genes, why shouldn’t we do it?” he asked. “The biggest ethical problem we have is not using our knowledge.”
(Kathy Svitil, “Brave New Genes,” Discover Magazine website, posted 5/20/98, <>).
15. “Physicist Hawking Focusing on Life.” San Francisco Chronicle, April, 13, 1996.
16. George Wald. “The Case Against Genetic Engineering.” The Recombinant DNA Debate. Jackson and Stich, eds. (Englewood Cliffs, N.J.: Prentice-Hall, 1979): 128 (Reprinted from The Sciences, Sept./Oct. issue, 1976).
17. Scientism is sometimes called New Humanism to distinguish it from the Humanism of the Renaissance.
    Scientists learn in a laboratory that their objects of study behave accord to existing theories. This is not surprising since theories have been formulated on the basis of laboratory experience. Scientists, but also many other people, tend not only to apply the principles found under such conditions to a specific experimental system, but also to consider them to be valid in other contexts. The impression is thus created that knowledge developed in closed systems under controlled conditions has unlimited validity in open systems as well. This conclusion is neither founded in theoretical considerations, nor always confirmed by practical experience. It becomes particularly significant when we attempt to predict the result of interventions in the natural environment on the basis of laboratory experiments.
    The aim of laboratory experiments is to create conditions which are as constant or controllable as possible. In the environment this is not feasible; the factors of influence (temperature, humidity, the flow of substances, the variety of specific species, etc.) change constantly. These changes follow certain regular principles but can hardly be predicted exactly. Rare occurrences (earthquakes, hurricanes, flooding, droughts, volcanic eruptions, etc.) are always possible. Since the characteristics of living organisms in the environment are also defined by their relationships to other living and non-living elements in the environment, it must be expected that they will behave in relation to these environmental parameters. In particular in the case of genetically engineered organisms not previously found in the environment, exact predictions about their behavior and thus about specific risk potential cannot be made. This is beyond the theoretical and experimental borders of the laboratory. In the confrontation  between primary, evolutionary nature and this secondary, synthetic nature uncertainies and risks emerge which can no longer be grasped and described with the theories of experimental science.
    …we are confronted today with a situation in which genetically modified organisms are being released into the environment. At present the numbers of different modified organisms whicfh are to be rleased will be relatively small. The problem of predictability of their behavior in the environment will become even more significant when large-scale application of such products takes place in the future. By often failing to explicitly point out the theoretical and practical problems of predictability, scientists mask the experimental nature of such releases and the fact that the knowledge necessary to understand and describe risks can only be won through such experiments. However, release experiments, like any other, can fail. In some cases, the organisms will not be able to establish themselves in the environment, in others they may cause irreversible and large-scale damage…. Since the outcomes of such releases into the environment cannot be exactly predicted, they are in fact experiements in the environment and with the environment. (Regine Kollek, “The Limits of Experimental Knowledge: A Feminist Perspective on the Ecological Risks of Genetic Engineering” Biopolitics: A Feminist and Ecological Reader on Biotechnology, Vandana Shiva and Ingunn Moser, eds. (London and New Jersey: Zed Books, 1995) 106-108.)
18. In addition to the physical effects, many are also concerned with mental and spiritual effects, areas clearly beyond the boundaries of scientific concern. Since science does not deal with the relations between the mental and spiritual dimensions and the physical dimension of life, science cannot tell us anything about how genetic engineering will affect our mental and spiritual life. Transcendence is the potential of all sentient life, not just human, for spiritual wisdom and liberation. Transcendence is meaningless from the perspective of scientific models.
    According to non-Cartesian views of the relation between the physical and the spiritual, the condition of our bodies and nervous systems affects our minds and vice versa. For example, the karma-based ethics of many Asian religious systems insists on purity of both mind AND body as a prerequisite for spiritual progress. This perspective leaves open the possibility that changing our genetic structures or those of the natural environment may adversely influence our potential for transcendence. Genetic engineering has the potential for altering both our bodies and their environments in ways that lessen their ability to support the process of personal spiritual transformation that is at the core of most paths to realization of the human potential for transcendence. No amount of scientific research can tell us anything about this danger.
    See also Ron Epstein “Ethical and Spiritual Issues in Genetic Engineering” Ahimsa Voices: a Quarterly Journal for the Promotion of Universal Values, 5(4), Oct. 1998, pp. 6-7 <>; and Ron Epstein, “Buddhism and Biotechnology” <>.
19. See “What Are Genes” above.
20. “THE END OF THE WORLD AS WE KNOW IT: The Environmental Costs of Genetic Engineering” <>.
21. This idea is central to Gaian theory, the theory that the entire planetary biosphere constitutes a single living organismor self-regulating system. Gaian theorists are divided into two main camps, those who believe that the earth is a mindless self-organizing physical system, and those who believe that the earth has its own consciousness or awareness.
22. ‘The term deep ecology was coined by Arne Naess in his 1973 article, “The Shallow and the Deep, Long-Range Ecology Movements.” Naess was attempting to describe the deeper, more spiritual approach to nature…. He thought that this deeper approach resulted from a more sensitive openness to ourselves and nonhuman life around us.’ Bill Devall and George Sessions, Deep Ecology: Living as if Nature Mattered (Satl Lake City: Peregrine Smith Books, 1985), p. 65.
22a. Although deep ecology and and Gaia theory are still somewhat controversial, the existence of such legislation as the Endangered Species Act and the National Environmental Policy Act in the United States is indication that there is an increasing awareness of the importance of environmental systems.

Check Also

Report: Why west turns blind eye to terrorist-besieged Syrian Shiite cities of Fu’ah, Kafriya?

Right on the heels of the recent Syrian army’s successes in its anti-terror push in …

Leave a Reply

Your email address will not be published. Required fields are marked *