Redesigning the World: Ethical Questions about Genetic Engineering

Scientists have already demonstrated the transfer of transgenes and marker genes to both bacterial pathogens and to soil fungi. That means genetically engineered organisms are going to enter the soil and spread to whatever grows in it. Genetically engineered material can migrate from the roots of plants into soil bacteria, in at least one case radically inhibiting the ability of the soil to grow plants.33 Once the bacteria are free in the soil, no natural barriers inhibit their spread. With ordinary soil pollution, the pollution can be confined and removed (unless it reaches the ground-water). If genetically engineered soil bacteria spreads into the wild, the ability of the soil to support plant life may seriously diminish.33a It does not take much imagination to see what the disastrous consequences might be.
Water and air are also subject to poisoning by genetically engineered viruses and bacteria.
The development of new genetically engineered crops with herbicide resistance will affect the environment through the increased use of chemical herbicides. Monsanto and other major international chemical, pharmaceutical, and agricultural corporations have staked their financial futures on genetically engineered herbicide-resistant plants.33b
Recently scientists have found a way to genetically engineer plants so that their seeds lose their viability unless sprayed with patented formulae, most of which turn out to have antibiotics as their primary ingredient. The idea is to keep farmers from collecting genetically engineered seed, thus forcing them to buy it every year. The corporations involved are unconcerned about the gene escaping into the wild, with obvious disastrous results, even though that is a clear scientific possibility.34
So that we would not have to be dependent on petroleum-based plastics, some scientists have genetically engineered plants that produce plastic within their stem structures. They claim that it biodegrades in about six months.35 If the genes escape into the wild, through cross-pollination with wild relatives or by other means, then we face the prospect of natural areas littered with the plastic spines of decayed leaves. However aesthetically repugnant that may seem, the plastic also poses a real danger. It has the potential for disrupting entire food-chains. It can be eaten by invertebrates, which are in turn eaten, and so forth. If  primary foods are inedible or poisonous, then whole food-chains can die off.36
Another bright idea was to genetically engineer plants with scorpion toxin, so that insects feeding on the plants would be killed. Even though a prominent geneticist warned that the genes could be horizontally transferred to the insects themselves, so that they might be able to inject the toxin into humans, the research and field testing is continuing.37
The genetic engineering of new types of insects, fish, birds and animals has the potential of upsetting natural ecosystems. They can displace natural species and upset the balance of other species through behavior patterns that are a result of their genetic transformation.
One of the more problematic ethical uses of animals is the creation of xenographs, already mentioned above, which often involve the insertion of human genes. (See the section immediately below.) Whether or not the genes inserted to create new animals are human ones, the xenographs are created for human use and patented for corporate profit with little or no regard for the suffering of the animals, their felings and thoughts, or their natural life-patterns.
Use of Human Genes
As more and more human genes are being inserted into non-human organisms to create new forms of life that are genetically partly human, new ethical questions arise. What percent of human genes does an organism have to contain before it is considered human? For instance, how many human genes would a green pepper38 have to contain before one would have qualms about eating it? For meat-eaters, the same question could be posed about eating pork. If human beings have special ethical status, does the presence of human genes in an organism change its ethical status? What about a mouse genetically engineered to produce human sperm39 that is then used in the conception of a human child?
Several companies are working on developing pigs that have organs containing human genes in order to facilitate the use of the organs in humans. The basic idea is something like this. You can have your own personal organ donor pig with your genes implanted. When one of your organs gives out, you can use the pig’s.
The U.S. Food and Drug Administration (FDA) issued a set of xenotransplant guidelines in September of 1996 that allows animal to human transplants, and puts the responsibility for health and safety at the level of local hospitals and medical review boards. A group of 44 top virologists, primate researchers, and AIDS specialists have attacked the FDA guidelines, saying, “based on knowledge of past cross-species transmissions, including AIDS, Herpes B virus, Ebola, and other viruses, the use of animals has not been adequately justified for use in a handful of patients when the potential costs could be in the hundreds, thousands or millions of human lives should a new infectious agent be transmitted.”40
England has outlawed such transplants as too dangerous.41
Genetically engineered material can enter the body through food or bacteria or viruses. The dangers of lethal viruses containing genetically engineered material and created by natural processes have been mentioned above.
The dangers of generating pathogens by vector mobilization and recombination are real. Over a period of ten years, 6 scientists working with the genetic engineering of cancer-related oncogenes at the Pasteur Institutes in France have contracted cancer.42
Non-human engineered genes can also be introduced into the body through the use of genetically engineered vaccines and other medicines, and through the use of animal parts genetically engineered with human genes to combat rejection problems.
Gene therapy, for the correction of defective human genes that cause certain genetic diseases, involves the intentional introduction of new genes into the body in an attempt to modify the genetic structure of the body. It is based on a simplistic and flawed model of gene function which assumes a one-to-one correspondence between individual gene and individual function. Since horizontal interaction43 among genes has been demonstrated, introduction of a new gene can have unforeseen effects. Another problem, already mentioned, is the slippery slope that leads to the notion of designer genes. We are already on that slope with the experimental administration of genetically engineered growth hormone to healthy children, simply because they are shorter than average and their parents would like them to be taller.44
A few years ago a biotech corporation applied to the European Patent Office for a patent on a so-called ‘pharm-woman,’ the idea being to genetically engineer human females so that their breast-milk would contain specialized pharmaceuticals.44a Work is also ongoing to use genetic engineering to grow human breasts in the laboratory. It doesn’t take much imagination to realize that not only would they be used for breast replacement needed due to cancer surgery, but also to foster a vigorous commercial demand by women in search of the “perfect” breasts.45 A geneticist has recently proposed genetically engineering headless humans to be used for body parts. Some prominent geneticists have supported his idea.46

Check Also

Report: Why west turns blind eye to terrorist-besieged Syrian Shiite cities of Fu’ah, Kafriya?

Right on the heels of the recent Syrian army’s successes in its anti-terror push in …

Leave a Reply

Your email address will not be published. Required fields are marked *