Redesigning the World: Ethical Questions about Genetic Engineering

ASSESSING THE PRICE
For all the advantages claimed for genetic engineering, in the overwhelming number of cases the price seems too high to pay. In order to insure megaprofits for multinational corporations well into the next century, we will have to mortgage the biosphere, seriously compromise life on the planet, and even risk losing what it means to be a human being. We have seen that genetic engineering poses serious risks to human health and to the environment. It raises serious ethical questions about the right of human beings to alter life on the planet, both sentient and non-sentient, for the benefit of a few.
If there are some areas of genetic engineering that can safely benefit humanity while respecting other forms of life, then efforts need to be redoubled not only in the area of scientific risk assessment, but also in developing broad ethical guidelines. If experts in both scientific and ethical areas are to be trusted and respected, they must be free from the taint of personal monetary gain and other forms of self-aggrandizement. The public’s right to know and assess potential dangers and ethical problems must have priority over both corporate secrecy and naïve views of academic freedom that accord scientists the right to experiment with whatever strikes their fancy without regard for the consequences. Decisions should not be left solely to the so-called experts, whatever their value. Ordinary citizens need to inform themselves, insist upon a mandate, and take responsibility for the grave decisions that must be made. The public welfare must be restored as the primary consideration, and the unrestrained amoral greed of multinational corporations somehow curtailed.
Is such a program of action possible? Certainly even slowing the inexorable progress of the current trends will be extremely difficult. Yet there is hope. In Europe, for example, heightened public awareness of the dangers of genetically engineered foods has significantly affected corporate plans for their widespread introduction there. Fortunately there also continue to be a vocal minority of well-trained scientists in the field, who see clearly the dangers of what is occurring, and who are brave enough to voice their consciences, despite very real personal and professional risks.58 Clearly the key is educating the public about what is happening. We need to have confidence that ordinary citizens working together can build a foundation of integrity from which can arise a collective wisdom that can show us the way through the incredibly complicated maze of issues surrounding genetic engineering.
NOTES
1. Ron Epstein is Research Professor at the Institute for World Religions, Berkeley, CA, and Lecturer, Philosophy Department, San Francisco State University. His email address is [email protected]. Further information related to the present article is available on his website “Genetic Engineering and Its Dangers” <http://online.sfsu.edu/~rone/gedanger.htm>. This article is currently being serialized in Vajra Bodhi Sea: A Monthly Journal of Orthodox Buddhism, Pt. 1, v. 32, Series 76 (October, 2001), pp. 34-35, 39 and following issues.
1a. Ho et. al. summarize the old and new genetic models as follows. In the old standard or ‘central dogma’ model:
        ¤Genes determine characters in linear causal chains, one gene giving rise to one character;
        ¤Genes are not subject  to influence from the environment;
        ¤Genes remain stable and constant;
        ¤Genes remain in organisms and stay where they are put.
According to the new genetics:
¤No gene ever works in isolation, but rather in an extremely complicated genetic network. The function of each gene is   dependent on the context of all the other genes in the genome. So, the same gene will have very different effects from individual to individual, because other genes are different. There is so much genetic diversity within the human population that each individual is genetically unique. And, especially if the gene is  transferred to another species, it is most likely to have new and unpredictable effects.
¤The genetic network, in turn, is subject to layers of feedback regulation from the physiology of the organism and its relationship to the external environment.
¤These layers of feedback regulation not only change the fucntion of genes but can rearrange them, multiply copies of them, mutate them to order, or make them move around.
¤And, genes can even travel outside the original organism to infect another–this is called horizontal gene transfer.
(Mae-Wan Ho, Hartmut Meyer and Joe Cummins, “The Biotechnology Bubble” Ecologist 28(3) May/June 1998, p. 148.
2. Stewart A. Newman, “Genetic Engineering as Metaphysics and Menace,” Science and Nature 9/10 (1989): esp. 114-118. See also Richard C. Strohman “Epigenesis and Complexity: the Coming Kuhnian Revolution in Biology,” Nature Biotechnology 15 (March 1997): 194-200, and Mae-Wan Ho, Genetic Engineering: Dream or Nightmare. The Brave New World of Bad Science and Big Business (Bath, UK: Gateway Books, 1998).
3. Vanaja Ramprasad. “Genetic engineering and the myth of feeding the world.” Biotechnology and Development Monitor No. 35 (June, 1998): 24.
4. Examples of specific long term effects are the death of a particular species or the introduction of a new disease organism.
5. After a major pesticide spill in Dunsmuir, California, in 1991, there was much opposition to stocking the river because it would strongly discourage the revival of the native fish populations.
6. See Vandana Shiva, Monocultures of the Mind (London: Zen books, 1993) and Biopiracy: the Plunder of Nature and Knowledge (Boston: South End Press, 1997), pp. 87-90. The use of genetic engineering in agriculture is a radical new extension of the monoculture paradigm. See also the discussion of the so-called ‘Terminator” genes below.
7. Most of this section is based on Jeremy Rifkin, Biotech Century: Harnessing the Gene and Remaking the World (J P Tarcher, 1998), pp. 15-32.
8. See below in the subsection on plants the section entitled “Some Specific Difficulties with Genetic Engineering.”
9. “The FDA cleared Organogenesis’ (Canton, MA) Apligraf® (graft-skin) for marketing. The product is the only living, bilayered skin construct approved for marketing in the U.S., according to Novartis Pharmaceuticals (E. Hanover, NJ), which will market Apligraf worldwide. Like human skin, Apligraf has two primary layers, including an outer epidermal layer made of living Keratinocytes. The dermal layer of Apligraf consists of living human fibroblasts. The human Keratinocytes and fibroblasts utilized to manufacture Apligraf are derived from donor tissue that is thoroughly screened for a wide range of infectious pathogens, notes a Novartis spokesperson. Apligraf is applied by a physician in a hospital outpatient facility or a wound care center.” (Genetic Engineering News, June 15, 1998.)
10. George Wald. “The Case Against Genetic Engineering.” The Recombinant DNA Debate. Jackson and Stich, eds. p. 127, 128. (Reprinted from The Sciences, Sept./Oct. 1976 issue).
11. Erwin Chargoff, Heraclitean Fire : Sketches from a Life before Nature (New York : Rockefeller University Press, 1978), p. 189.
12. Ibid., p. 190.
13. Watson, J.D., personal communication, September 22 and 27, 1986, Cold Spring Harbor, in Tibor R. Szanto, “Value Communities in Science: The Recombinant DNA Case. Controversial Science: From Content to Contention. Thomas Brante et. al. eds. (Albany, NY: SUNY Press), 260, n. 5.

Check Also

Report: Why west turns blind eye to terrorist-besieged Syrian Shiite cities of Fu’ah, Kafriya?

Right on the heels of the recent Syrian army’s successes in its anti-terror push in …

Leave a Reply

Your email address will not be published. Required fields are marked *