Redesigning the World: Ethical Questions about Genetic Engineering

Lidia Watrud . . . former microbial biotechnology researcher at Monsanto Corporation in St. Louis, Missouri, now with the United States Environmental Protection Agency Environmental Effects Laboratory, Western Ecology Division.
Clayton K. Yeutter . . . former Secretary of the U.S. Department of Agriculture, former U.S. Trade Representative (who led the U.S. team in negotiating the U.S. Canada Free Trade Agreement and helped launch the Uruguay Round of the GATT negotiations), now a member of the board of directors of Mycogen Corporation, whose majority owner is Dow AgroSciences, a wholly owned subsidiary of The Dow Chemical Company.
Such problems are by no means restricted to the United States:
The government’s advisers on genetically engineered crops should be sacked because too many have close links to the biotech industry, environmentalists said yesterday. Friends of the Earth (FoE) said that 8 of the 13-strong Advisory Committee on Releases to the Environment (ACRE) have ties with companies or organisations involved in carrying out crop trials or other genetic engineering research. Members of ACRE are the Government’s statutory advisers on allowing genetically modified crops to be planted in the countryside. They have so far passed more than 150 applications without any refusals. Although panel members do not vote on any application in which they have a personal interest, Adrian Bebb, FoE’s food campaigner, said the process was flawed. “How can people have confidence in the government advisory panel when so many members have close financial links to the biotech industry?” (London INDEPENDENT July 8, 1998)
32. Russell Mokhiber,”‘Objective’ Science at Auction” (The Ecologist, March/April, 1998). See also Dan Fagin, Marianne Lavelle and the Center for Public Integrity, Toxic Deception: How the Chemical Industry Manipulates Science, Bends the Law, and Threatens Your Health (Birch Lane Press, 1997).
32a. According to a 1991 study of universities in the United States, M.I.T., Stanford, and Harvard respectively had the highest rates of commercial penetration into their biotechnology-related departments. (Sheldon Krinsky et. al., “Academic-Corporate Ties in Biotechnology: A Quantitative Study” Science, Technology and Human Values 16(3) Summer 1991, 275-287). The College of Natural Resources, University of California at Berkeley recently signed  a $50 million agreement with a subsidiary of Novartis Corporation to give the latter exclusive access to patent rights on genetic engineering research done at the college. Novartis also has the right to appoint some faculty members. See Carl T. Hall, “Research Deal Evolving Between UC, Biotech Firm: Berkeley Campus Could Get $50 Million” San Francisco Chronicle, Oct. 9, 1998; Peter Rosset and Monica Moore, “Research Alliance Debated” San Francisco Chronicle, November 16, 1998; Charles Burress, “UC Finalizes Pioneering Research Deal With Biotech Firm: Pie Tossers Leave Taste of Protest” San Francisco Chronicle, November 24, 1998.
33. Ho, Genetic Engineering: Dream or Nightmare?, p. 133. See also M.T. Holmes and E.R. Ingham, “The Effects of Genetically Engineered Micro-organisms on Soil Food-webs,” Bulletin of the Ecological Society of America (Supplement), 75 (1994): 97.
The conscious choice of a few genes for mobilization and widespread replication substitutes human judgment for natural selection. From a theological viewpoint, it is questionable that the agribusiness scientific staff have the collective wisdom to determine what constitutes the “good” when it comes to desriable genes. The fact that ehir choice could become self-sustaining (e.g., if the gene escaped into the wild) is cause for further concern. Initially, this and other adverse impacts  potentially resulting from mass scale transgenic operations are likely to be invisible. One potentially insidious effect of reliance on genetically engineered herbicide resistant technology is the repeated use of single herbicide preparations. The repeated applications of a controlled sequence of four or more different herbicides typical of transgenic farming could be expected to transiently affect soil microorganims. But the sustained reliance on a single herbicide such as glyphosate [Roundup] or bromoxynil would predictably shift the soil microflora for longer periods, perhaps changing the overall composition of the soil’s living matter irrevocably. Such an effect, should it occur, could affect soil quality for future plantings, particularly since germination in some herbicide treated soils has been reported to be impaired. Here the ethical concern is responsibility for future generations…. (Marc Lappe and Britt Bailey, Against the Grain: Biotechnology and the Corporate Takeover  of Your Food, Monroe, Maine: Common Courage Press, 1998, 114)
33b.  Ibid., esp. 50-62.`
On March 3, 1998 the US Department of Agriculture (USDA) and an American cotton seed company, Delta & Pine Land Co., received a US patent on a technique that genetically alters seed so that it will not germinate if re-planted a second time. The technology aims to prevent farmers from saving seed from their harvest to re-plant the following season. Because it is a potentially “lethal” technology, Rural Advancement Foundation International (RAFI) has dubbed it the “Terminator technology.” …If commercially viable, the Terminator technology will have profound implications for agriculture. It is a global threat to farmers, biodiversity and food security. The seed-sterilizing technology threatens to eliminate the age-old right of farmers to save seed from their harvest and it jeopardizes the food security of 1.4 billion people – resource poor farmers in the South – who depend on farm-saved seed. The developers of the technology say that it will be targeted for use primarily in the South as a means of preventing farmers from saving proprietary seeds marketed by American seed corporations. Delta & Pine Land Co. and USDA have applied for patents on the Terminator technology in at least 78 countries. If the Terminator technology is widely utilized, it will give the multinational seed and agrochemical industry an unprecedented and extremely dangerous capacity to control the world’s food supply. (RAFI Communique, March/April 1998
Geneticist Joseph Cummins has commented:
…Pollen escaping from the terminator crop is sterile and cannot spread to weeds or other crops. Pollen escaping from the tetracycline treated seed producing crop can spread the terminator blocking genes. When a weed is fertilized, for example, with the terminator pollen, the new generation of seeds will bear plants with fertile pollen. In the next generation, 25% of the terminator plants will produce sterile pollen. Since the sterile pollen cannot spread the terminator genes, the spread of terminator genes by normal sexual means is limited, but the terminator genes will always be in the population. The situation is similar to lethal genetic diseases in humans. Terminator doesn’t threaten plant populations if it is spread only by normal sexual processes. However, spread of terminator by other means is more intimidating…. Spreading terminator genes by virus could easily cause a wide array of weeds and crops to be rendered sterile, and genetic recombination could easily eliminate the reversing action of tetracycline. The terminator virus could have a have a profound influence on crop production…. [Such genes] are potentially able to create chromosome mutations leading to genetic erosion and untoward changes in gene regulation and expression. They are very highly mobile, and, once introduced into higher plants and animals, are likely to spread and not want to leave ever!
(“Genetics of Terminator,” E-mail from Prof. Cummins, Wednesday, June 17, 1998. Some punctuation added.)

Check Also

Report: Why west turns blind eye to terrorist-besieged Syrian Shiite cities of Fu’ah, Kafriya?

Right on the heels of the recent Syrian army’s successes in its anti-terror push in …

Leave a Reply

Your email address will not be published. Required fields are marked *